MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2018

Calculator-free

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, 2018

Question 1

Solution	
$ z ^4 = (-1)^2 + (\sqrt{3})^2 = 4.$ Hence $ z = \sqrt{2}$	
Also the argument of z lies in the fourth quadrant with $4 = 1 (\sqrt{2}) - 2 = 1 (\sqrt{2}) - 2 = \frac{\pi}{2} - \frac{5\pi}{2}$	
$\arg z^{*} = \tan^{-1}(-\sqrt{3}) = 2\pi - \tan^{-1}(\sqrt{3}) = 2\pi - \frac{1}{3} = \frac{1}{3}$	
Thus $z^4 = 4 \exp\left(\frac{5\pi}{3} + 2k\pi\right)$ for integer $k = 0, 1, 2, 3$ so $z = \sqrt{2} \exp\left(\frac{5\pi}{12} + \frac{k\pi}{2}\right)$	
Hence the four solutions are $z = \sqrt{2} \exp(i\vartheta)$ where $\vartheta = \frac{5\pi}{12}, \frac{11\pi}{12}, \frac{17\pi}{12}$ and $\frac{23\pi}{12}$	
Restricting to the given range requires that	
$z = \sqrt{2} \exp(i\vartheta)$ where $\vartheta = -\frac{7\pi}{12}, -\frac{\pi}{12}, \frac{5\pi}{12}$ and $\frac{11\pi}{12}$.	
Mathematical behaviours	Marks
• states the correct value for $ z $	1
• gives the correct value for $\arg z^4$	1
• calculates four distinct solutions of the equation (one mark for 2 or 3)	2
 restricts the arguments to the appropriate range 	1

Solution	
Since	
$\cos 2x = 2\cos^2 x - 1$	
it follows that	
$\int_{\pi/6}^{\pi/4} \frac{dx}{1+\cos 2x} = \frac{1}{2} \int_{\pi/6}^{\pi/4} \sec^2 x \ dx = \frac{1}{2} \left[\tan x \right]_{\pi/6}^{\pi/4} = \frac{1}{2} \left(1 - \frac{1}{\sqrt{3}} \right).$	
Mathematical behaviours	Marks
 identifies correct double angle formula to use 	1
• simplifies the integral to requiring the anti-derivative of $\sec^2 x$	1
 integrates correctly 	1
 evaluates the indefinite integral at the end points 	1

Question 2(b)

(4 marks)

Solution	
If we put $u = \sqrt{x} \Rightarrow \frac{du}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2u}$ then we find that $\int_{4}^{9} \frac{dx}{x + \sqrt{x}} = 2\int_{2}^{3} \frac{u}{u^{2} + u} du = 2\int_{2}^{3} \frac{du}{1 + u} = 2[\ln(1 + u)]_{u=2}^{u=3}$ $= 2[\ln 4 - \ln 3] = 2\ln(\frac{4}{3})$	
Mathematical behaviours	Marks
 calculates <i>du / dx</i> correctly substitutes into integral changing the limits appropriately integrates the expression correctly substitutes the boundary values and simplifies to a suitable form 	1 1 1

Question 2 (c)

Solution	
If we put $v = \cos x$ then $\frac{dv}{dx} = -\sin x$ and the integral $\int_{0}^{\pi/2} \sin x \cos^{n} x dx = -\int_{1}^{0} v^{n} dv = \int_{0}^{1} v^{n} dv = \frac{1}{n+1}$ Hence if the integral equals $\frac{1}{2018}$ we conclude that $n = 2017$	
Mathematical behaviours	Marks
 identifies that ∫ f'(x)[f(x)]ⁿ dx = (f(x))ⁿ⁺¹/(n+1) identifies the most appropriate substitution evaluates the integral correctly and thereby deduces the correct value of n 	1 1 1 1

(2 marks)

Question 3 (a)

Solution	
Graph (A) Equation I $\frac{dy}{dx} = e^{-x}$	
Graph (B) Equation III $\frac{dy}{dx} = \cos x$	
Graph (C) Equation II $\frac{dy}{dx} = y - x$	
Mathematical behaviours	Marks
matches one graph correctly	1
 matches a second graph correctly 	1

Question 3 (b)(i)

Solution	
$\frac{d^2 y}{dx^2} = (y-2)^2 + 2x(y-2)\frac{dy}{dx}$ $x = 0, \ y = -2, \ \frac{dy}{dx} = 0, \ \frac{d^2 y}{dx^2} > 0$ Hence at $x = 0, \ f$ has a relative minimum.	
Mathematical behaviours	Marks
• uses implicit differentiation to determine $\frac{d^2y}{dx^2}$	1
• calculates $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x=0$	1
correct conclusion	1

Question 3 (b)(ii)

(4 marks)

Solution	
$\int \frac{dy}{(y-2)^2} = \int x dx \Rightarrow -\frac{1}{y-2} = \frac{x^2}{2} + c_1$ $\Rightarrow y = 2 - \frac{2}{x^2 + c_2}$ $x = 0, \ y = -2 \Rightarrow c_2 = \frac{1}{2}$ $f(x) = 2 - \frac{4}{2x^2 + 1}$	
Mathematical behaviours	
 separates the variables determines the correct anti-derivaties calculates the constant correctly states the required particular solution 	1 1 1 1

Question 4 (a)

(3 marks)

Question 4 (b)

Question 5 (a)

(2 marks)

Solution

The equation $x^{2} + y^{2} + z^{2} - 8x + 12y - 24z + 171 = 0$ can be rewritten as

$$(x-4)^{2} + (y+6)^{2} + (z-12)^{2} = 4^{2} + 6^{2} + 12^{2} - 171 = 25$$
 (*)

So the centre C has coordinates (4, -6, 12) and the radius is $\sqrt{25} = 5$

Mathematical behaviours	Marks
 obtains co-ordinates of C 	1
 calculates radius correctly 	1

Question 5 (b)

Solution			
The point A lies on the line segment \overrightarrow{OC} and on the sphere S.			
So A has coordinates $(4t, -6t, 12t)$ for some t			
Substituting into the equation for S gives			
$(4t - 4)^2 + (-6t + 6)^2 + (12t - 12)^2 = 25$			
i.e. $196(t-1)^2 = 25$. i.e. $t - 1 = \pm 5/14$			
$t = 9/14$ gives the point closest to O, so the coordinates of A are $\left(\frac{18}{7}, -\frac{27}{7}, \frac{54}{7}\right)$).		
Alternative method:			
Distance of the centre of the sphere from the origin is $\sqrt{4^2 + (-6)^2 + 12^2} = \sqrt{196} = 14$			
Radius of sphere is 5 so required point is $\frac{9}{14}$ along the line joining O to (4, -6, 12)			
Hence the point A is as before			
Mathematical behaviours	Marks		
 obtains the correct form of the co-ordinates A in terms of a parameter 	1		
 solves for the parameter 	1		
 derives the appropriate co-ordinates of A 	1		
 determines distance of centre from origin 	1		
 determines required point is 9/14ths along the line OC 	1		
 derives the appropriate co-ordinates of A 	I		

Question 5 (c)

Solution	
The vector $\overrightarrow{OA} = 2i - 3j + 6k$ is normal to P. So $2x - 3y + 6z = c$ (*) is a Cartesian equation of P.	
Since A $\left(\frac{18}{7}, -\frac{27}{7}, \frac{54}{7}\right)$ lies on P, $c = \frac{36}{7} + \frac{81}{7} + \frac{324}{7} = \frac{441}{7} = 63$	
So $2x - 3y + 6z = 63$ is a Cartesian equation of P.	
Mathematical behaviours	Marks
recognises the normal to the plane	1
 writes down the correct form of the equation of the plane (*) 	
evaluates the constant correctly	1

Question 6 (a)

False

(2 marks)

The confidence interval may contain NONE of the original population. For example, if the population consists just of 0's and 1's, and the sample size is large enough, then

$0 \smallsetminus A L \smallsetminus A \mid L \smallsetminus I$	0	$< \overline{X}$	-E	$< \overline{X}$	+ E	< 1.	
--	---	------------------	----	------------------	-----	------	--

Mathematical behaviours	Marks
states correct answer	1
gives a valid reason	1

Question 6 (b)

(2 marks)

Solution		
True		
The probability that any one confidence interval will contain the mean is equal to the confidence level, i.e. 90% or 0.9		
Mathematical behaviours	Marks	
states correct answergives a valid reason	1 1	

Question 6 (c)

(2 marks)

Solution		
False		
Because the samples are independent and random it is possible that NONE of the confidence intervals will contain μ		
Mathematical behaviours	Marks	
states correct answergives a valid reason	1 1	

Question 6 (d)

probabilities

Solution	
True	
The probability that exactly 9 of the 10 confidence intervals will contain μ is $B(10,9,0.9) = {10 \choose 9} \times 0.9^9 \times 0.1^1 = 10 \times 0.9^9 \times 0.1 = 0.9^9$ (*)	
On the other hand, the probability that all of the 10 confidence intervals will contain μ is $B(10,10,0.9) = 0.9^{10}$. (**)	
Clearly $0.9^{\circ} > 0.9^{\circ}$:	
Mathematical behaviours	Marks
 states correct answer derives the correct expressions (*) and (**) for the respective 	1 1+1

Question 7

